Fabrication of Cell-Laden Hydrogel Fibers with Controllable Diameters

نویسندگان

  • Zhuoqun Cheng
  • Maosheng Cui
  • Yu Shi
  • Yanding Qin
  • Xin Zhao
چکیده

Cell-laden hydrogel fibers are widely used as the fundamental building blocks to fabricate more complex functional three-dimensional (3D) structures that could mimic biological tissues. The control on the diameter of the hydrogel fibers is important so as to precisely construct structures in the above 3D bio-fabrication. In this paper, a pneumatic-actuated micro-extrusion system is developed to produce hydrogel fibers based on the crosslinking behavior of sodium alginate with calcium ions. Excellent uniformity has been obtained in the diameters of the fabricated hydrogel fibers as a proportional-integral-derivative (PID) control algorithm is applied on the driving pressure control. More importantly, a linear relationship has been obtained between the diameter of hydrogel fiber and the driving pressure. With the help of the identified linear model, we can precisely control the diameter of the hydrogel fiber via the control of the driving pressure. The differences between the measured and designed diameters are within ±2.5%. Finally, the influence of the calcium ions on the viability of the encapsulated cells is also investigated by immersing the cell-laden hydrogel fibers into the CaCl2 bath for different periods of time. LIVE/DEAD assays show that there is little difference among the cell viabilities in each sample. Therefore, the calcium ions utilized in the fabrication process have no impact on the cells encapsulated in the hydrogel fiber. Experimental results also show that the cell viability is 83 ± 2% for each sample after 24 h of culturing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P21: Local Administration of Methylprednisolone Laden Hydrogel Enhances Functional Recovery of Transected Sciatic Nerve in Rat

The repair of peripheral nerve injuries is still one of the most challenging tasks and concerns in neurosurgery. Effect of methylprednisolone-laden hydrogel loaded into a chitosan conduit on the functional recovery of peripheral nerve using a rat sciatic nerve regeneration model was assessed. A 10-mm sciatic nerve defect was bridged using a chitosan conduit (CHIT/CGP-Hydrogel) filled with CGP-h...

متن کامل

Microfluidic direct writer with integrated declogging mechanism for fabricating cell-laden hydrogel constructs.

Cell distribution and nutrient supply in 3D cell-laden hydrogel scaffolds are critical and should mimic the in vivo cellular environment, but been difficult to control with conventional fabrication methods. Here, we present a microfluidic direct writer (MFDW) to construct 3D cell-laden hydrogel structures with openings permitting media exchange. The MFDW comprises a monolithic microfluidic head...

متن کامل

Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.

Microfluidic technologies are emerging as an enabling tool for various applications in tissue engineering and cell biology. One emerging use of microfluidic systems is the generation of shape-controlled hydrogels (i.e., microfibers, microparticles, and hydrogel building blocks) for various biological applications. Furthermore, the microfluidic fabrication of cell-laden hydrogels is of great ben...

متن کامل

Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating

Development of a simple, straightforward 3D fabrication method to culture cells in 3D, without relying on any complex fabrication methods, remains a challenge. In this paper, we describe a new technique that allows fabrication of scalable 3D cell-laden hydrogel structures easily, without complex machinery: the technique can be done using only apparatus already available in a typical cell biolog...

متن کامل

Hydrosoluble, UV-crosslinkable and injectable chitosan for patterned cell-laden microgel and rapid transdermal curing hydrogel in vivo.

Natural and biodegradable chitosan with unique amino groups has found widespread applications in tissue engineering and drug delivery. However, its applications have been limited by the poor solubility of native chitosan in neutral pH solution, which subsequently fails to achieve cell-laden hydrogel at physiological pH. To address this, we incorporated UV crosslinking ability in chitosan, allow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017